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The possibility of constructing a Lagrangian and Hamiltonian formulation is exam-
ined for a radiating point-like charge usually described by the classical Lorentz-Dirac
equation. It turns out that the latter equation cannot be obtained from the variational
principle, and, furthermore, has nonphysical solutions. It is proposed to consider a
physically equivalent set of reduced equations which admit a Hamiltonian formula-
tion with non-canonical Poisson brackets. As an example, the effective dynamics of a
non-relativistic particle moving in a homogeneous magnetic field is considered. The
proposed Hamiltonian formulation may be considered as a first step to a consistent
quantization of the Lorentz-Dirac system.
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1. INTRODUCTION

A remarkable peculiarity of the classical electrodynamics of point-like
particles is the possibility of a consistent analysis of the radiation damping force
in the framework of local equations of motion which do not contain dynamical
fields. These equations are known as the Lorentz-Dirac equations and differ from
the usual Lorentz equations by additional terms with a third-order derivative in the
trajectory time (Dirac, 1938; Landau and Lifshitz, 1962; Poisson, 2006). The pres-
ence of odd higher-order time derivative implies two immediate consequences.
First of all, the dynamics of a particle is no longer reversible in time, which is an
agreement with the intuitive concept of the physical irreversibility of a radiation
process. In the second place, as distinct from the ordinary classical mechanics, in
order to assign the initial data one has to indicate not only the initial position and
velocity of a particle but also the initial acceleration. The latter circumstance leads
to the fact that, together with the physically sensible solutions, the equations con-
tain numerous solutions which do not admit a reasonable physical interpretation
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(for example, self-accelerating solutions (Landau and Lifshitz, 1962; Poisson,
2006). Furthermore, in contrast to the Lorentz equation, the Lorentz-Dirac
equation is not a Lagrangian equation, i.e., it does not follow from the variational
principle, which makes impossible a direct quantization of this system.

It should be noted that, on both the quantum and classical level, Maxwell’s
electrodynamics is an essentially perturbative theory, where calculations are made
only in the form of asymptotic series in the coupling constant (the electric charge
e). In the general case, these series are divergent; however, the calculation of
merely the first terms of an expansion series usually provides a good approxima-
tion to the experimental data, in view of the smallness of the fine structure con-
stant. At the classical level, a consistent perturbative treatment of electrodynamics
leads to the following selection rule: the physical solutions of the Lorentz-Dirac
equation are only those which have a smooth limit of vanishing interaction, i.e.,
when the particle charge tends to zero. It turns out that all such solutions can
be described by one second-order equation, the so-called reduced Lorentz-Dirac
equation.

In this paper, we investigate the possibility of constructing a Lagrangian and
Hamiltonian formulation for the classical and reduced Lorentz-Dirac equations
in the framework of a generalized inverse problem of the calculus of variations.
The construction of the Hamiltonian description of a radiating charge can pro-
vide a basis for a quantum-mechanical description of the effects of radiation
damping, alternative to the quantum field description in the same sense in which
the Lorentz-Dirac equation allows one to consider radiation reaction in classical
electrodynamics.

The article is organized as follows. In Section 2, we prove that the classical
Lorentz-Dirac equation, as well as its nonrelativistic analogue, does not allow the
existence of an integrating multiplier (Havas, 1957, 1973; Dodonov et al., 1978),
and, therefore, cannot be obtained from the variational principle for a non-local
action functional. Section 3 is devoted to the physically equivalent set of reduced
equations. Firstly, we discuss the procedure of a perturbative reduction of order
for the classical Lorentz-Dirac equation. The aim of this procedure is to derive
such a second-order equation that would be equivalent to the initial Lorentz-Dirac
equation in the sector of physical solutions and would have no other (nonphysical)
solutions. Next, we discuss the inverse problem of the calculus of variations for the
reduced nonrelativistic Lorentz-Dirac equation. As an example, we consider the
problem of self-consistent dynamics for a charge in a homogeneous magnetic field
(the synchrotron problem). It is shown that this system does not have a satisfactory
Lagrangian description: none of the possible Lagrangians yields, in the limit of
vanishing interaction, the standard Lagrangian of a free particle. Nevertheless,
as shown in Section 4, a satisfactory description can be found in a Hamiltonian
formalism. The presence of radiation damping leads, however, to the fact that
the Poisson brackets are non-canonical, as well as to the absence of phase-space
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polarization (Woodhouse, 1992), i.e., there is no separation of the variables into
position coordinates and conjugate momenta, which prevents a transition to the
second-order Lagrangian formalism.

2. IMPOSSIBILITY OF A LAGRANGIAN DESCRIPTION
OF THE CLASSICAL LORENTZ-DIRAC SYSTEM

Consider the question of the existence of an action functional for the rela-
tivistic Lorentz–Dirac equation (Landau and Lifshitz, 1962; Poisson, 2006)

gµ = −mẍµ + e

c
Fµνẋ

ν + 2e2

3c3

(
ẍµ − 1

c2
ẋµẍν ẍ

ν

)
= 0, (1)

describing the effective dynamics of a point-like charge with radiation back-
reaction. Here, xµ = (t, x) are the coordinates of the particle in a four-dimensional
space-time; Fµν = (E, H) is the electromagnetic field tensor; the constants c and
e are the speed of light and the electric charge, respectively.

As was already mentioned, this equation is not Lagrangian, i.e., it cannot
be obtained by taking a variation of some action functional S[x]. However, in a
more general setting of this problem there arises the question of the existence of
a non-singular matrix hµ

ν (t, x, ẋ . . .) such that for the equivalent set of equations
ǵν = hµ

ν gµ = 0 the inverse problem of the calculus of variations already has a
solution, or, equivalently, there does exist an action functional for this system. The
matrix hµ

ν is called an integrating multiplier2 (Havas, 1957, 1973; Dodonov et al.,
1978). In what follows, by the inverse problem of the calculus of variations we
understand the finding of an integrating multiplier that converts a given system
of differential equations into a total variational derivative. Even in this (extended)
setting, it is known that the inverse problem of the calculus of variations is not
always solvable, and even if it does have a solution, this solution is not unique
(Dodonov et al., 1978; Henneaux, 1982; Morandi et al., 1990; Anderson and
Thompson, 1982; Hojman and Urrutia, 1981; Douglas, 1941).

Let there exist an integrating multiplier hν
µ for Eq. (1), i.e., there exists an

action functional S[x] whose variation yields the system

hν
µgν = 0 (2)

Since Eq. (1) do not include derivatives higher than the third order, the corre-
sponding Lagrangian depends only on the first- and second-order derivatives of
the trajectory; moreover, the dependence on the second-order derivatives must be
linear. This implies

L = a(x, ẋ) + bµ(x, ẋ)ẍµ . (3)

2 Not to be confused with a similar notion in the theory of ordinary differential equations.
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Taking a variation of the action S[x] and making a comparison between the result
and Eq. (2), we conclude that

∂bµ

∂ẋν
− ∂bν

∂ẋµ
= γ hµν ,

c2

(
∂2bν

∂ẋµ∂ẋλ
− ∂2bµ

∂ẋν∂ẋλ

)
ẍν ẍλ = −γ hµλẋ

λẍν ẍ
ν ,

(4)

where γ = 2e2/3c3. In particular, it is evident that the matrix hµν = hλ
µηλν (ηµν is

the Minkowsky metrics) must be antisymmetric. Differentiating the first of Eq. (4)
w.r.t. ẋλ, and substituting the result into the second equation, we obtain

∂hµσ

∂ẋλ
ẍσ ẍλ = − 1

c2
hµαẋαẍν ẍ

ν . (5)

As long as hµν does not depend on ẍµ, the above equation yields

∂hµν

∂ẋλ
= − 1

c2
hµαẋαηνλ . (6)

Since hµν is antisymmetric, we arrive at the relation

hµαẋαηνλ = −hναẋαηµλ ,

whose contraction with ηνλ leads to

hµνẋ
ν = 0 . (7)

Then (6) implies

∂hµν

∂ẋλ
= 0,

which means that hµν does not depend on ẋλ, and then, due to (7), we conclude that
the matrix hµν is degenerate. Thus, we have arrived at a contradiction. Classical
Lorentz-Dirac Eq. (1) does not admit the existence of an integrating multiplier.

For the non-relativistic Lorentz–Dirac equation

g = −mẍ + eE + e

c
[ẋ, H] + 2e2

3c3
ẍ = 0, (8)

the same arguments as above show that the matrix of an integrating multiplier
should be antisymmetric, and this, again, contradicts the condition of nonsingu-
larity, since the system (8) is a set of three equations, and hence an integrating
multiplier must be a third-rank matrix; however, any antisymmetric matrix of an
odd rank is necessarily degenerated.

The presence of an additional item with a third-order time derivative in the
Lorentz–Dirac equation, apart from the problem of the variational principle, leads
to a certain difficulty related to a physical interpretation. Firstly, in accordance
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with the postulates of classical mechanics, a state of any mechanical system must
be uniquely determined by assigning its position and velocity, which are obviously
insufficient for assigning initial data to third-order equations. Secondly, as shown
by a simple analysis, together with physically sensible solutions, Eqs. (1) and (8)
admit a set of nonphysical (e.g., self-accelerating) solutions (Landau and Lifshitz,
1962; Poisson, 2006).

Both mentioned problems are closely related to each other and have a com-
mon solution. Namely, it is postulated that only those solutions of the Lorentz–
Dirac equation are physical trajectories that have a smooth limit as the charge
of a particle goes to zero. This requirement turns out to actually eliminate the
pathological solutions, and, furthermore, each physical trajectory can be uniquely
determined by assigning the initial position and velocity of a particle. The mean-
ing of the imposed condition becomes obvious if one observes that the third-order
time derivative enters the Lorentz–Dirac equation being multiplied by the pertur-
bation e2. Therefore, in the limit of vanishing interaction (e → 0) the order of
the Lorentz–Dirac equation effectively reduces to two, after which this equation
describes the ordinary free-particle motion. In other words, within the framework
of a perturbative treatment of the electromagnetic interaction, when the coupling
constant e is regarded as small, the presence of a term with a third-order time
derivative is treated not as the appearance of additional degrees of freedom of the
particle (which would be absurd from the physical point of view) but merely as a
small deformation of the free particle dynamics.3

Instead of extracting smooth (in e) solutions of a third-order equation with
a perturbation at the higher derivative, it is possible to set the problem of finding
such a second-order equation whose solutions should obey the initial Lorentz–
Dirac equation and be automatically smooth. The procedure of constructing such
a reduced equation is called the perturbative reduction of order.

3. PHYSICALLY EQUIVALENT SET OF REDUCED EQUATIONS

3.1. Perturbative Reduction of Order in the Lorentz–Dirac Equation

Let there exist such a second-order equation,

ẍi = f i(x, ẋ, e) i = 1, 2, 3 (9)

that (a) all solutions xi(t, e) are smooth functions in a neighborhood of e = 0,
and (b) it obeys the nonrelativistic Lorentz–Dirac equation (8). The fulfillment
of condition (a) can be guaranteed after requiring, for instance, that the right-
hand side of Eq. (9) be an analytic function of e. Let us examine condition (b).

3 At the same time, the value of charge e, playing the role of a deformation parameter, may be more
than small. All that is required is the existence of a smooth limit in a solution when e → 0.
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Differentiating Eq. (9) one time w.r.t. t , we obtain

ẍi = ∂f i

∂xj
ẋj + ∂f i

∂ẋj
ẍj .

Using Eq. (9) once again, we have

ẍi = ∂f i

∂xj
ẋj + ∂f i

∂ẋj
f j . (10)

Assuming now that all solutions (9) also obey Eq. (8), and then expressing in the
latter equation ẍi and ẍi through ẋi and xi , with the help of (9), (10), we obtain
an identity. This yields the following equation for the function f i(x, ẋ):

mf i = eEi + e

c
[ẋ, H ]i + 2e2

3c3

(
∂f i

∂xj
ẋj + ∂f i

∂ẋj
f j

)
. (11)

A solution of this equation can be found in the form of a power series in e:

f i =
∞∑

k=0

ekf i
(k) (12)

where

f i
(0) = 0 ,

f i
(1) = (m)−1Ei + (mc)−1[ẋ, H ]i ,

f i
(k) = 2

3mc3

(
∂f i

(k−2)

∂xj ẋj +
k−2∑
l=0

∂f i
(k−2−l)

∂ẋj f
j

(l)

)
, k ≥ 2 .

Thus, we have obtained a second-order equation describing the effective dynamics
of a charged particle in an electromagnetic field with a radiation back-reaction
force. All solutions of this equation are also solutions of the initial Lorentz–Dirac
equation, and, furthermore, they are smooth in e.

For certain simple configurations of external fields, the expression for the
force f i can be found in a simple form. For instance, in the case of a homogeneous
magnetic field, H = (0, 0,H ), E = 0, the reduced Lorentz-Dirac equation takes
the form

ẍ = αẋ − βẏ

ÿ = βẋ + αẏ

z̈ = 0 ,

(13)

where, in the system of units m = c = 1, we have

α= 6 − √
6
√

3 + √
9 + 64e6H 2

8e2
≈−2

3
e4H 2, β = eH

√
6√

3 + √
9 + 64e6H 2

≈ eH .

(14)
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If one formally sets α = 0 in Eq. (13), they become the usual Lorentz equa-
tions describing the dynamics of a charged particle in the “effective” magnetic
field B = (0, 0, β/e). In this case, the trajectories are concentric circles. For α �= 0
the particle spirals at the origin of xy-plane. In view of this parameter, α can be
identified with the coefficient of radiation friction.

3.2. Construction of an Action Functional for a Set of Second-Order
Equations

In this section, we consider the problem of constructing an action functional for a
set of ordinary differential equations of the form

ẍi = f i(t, x, ẋ) (15)

In the case of one degree of freedom, the problem was solved by Darboux (1894).
The case of two degrees of freedom was investigated by Douglas (1941); in
particular, he presented examples of second-order equations which do not admit
an integrating multiplier. The general case has been examined by many authors
(see, e.g., (Havas, 1957, 1973; Henneaux, 1982; Morandi et al., 1990; Anderson
and Thompson, 1982; Hojman and Urrutia, 1981)).

Technically, the question of the existence of an integrating multiplier is
reduced to the analysis of compatibility for the set of linear partial differential
equations arising from the condition of commutativity of variational derivatives,
so called Helmholtz condition (von Helmholtz, 1887). Below, we will present a
simple method of deriving these equations, which does not appeal to the theory of
generalized functions.

The most general action functional for a set of second-order differential
equations has the form S[x] = ∫

dtL(x, ẋ, t). The extremals of this functional are
solutions of the corresponding Euler–Lagrange equation

δS

δxi
= ∂L

∂xi
− ∂2L

∂t∂ẋi
− ∂2L

∂ẋi∂xj
ẋj − ∂2L

∂ẋi∂ẋj
ẍj = 0 . (16)

Let S be an action functional for the system (15), then all solutions of Eqs. (15)
and (16) must coincide. This means that if we express the acceleration ẍj from the
Euler–Lagrange equations through the force f j (x, ẋ), then we obtain the identity

∂L

∂xi
− ∂2L

∂t∂ẋi
− ∂2L

∂ẋi∂xj
ẋj − ∂2L

∂ẋi∂ẋj
f j (t, x, ẋ) = 0 . (17)

For a given set of functions f i , this yields a set of second-order partial differential
equations for L. It is also necessary to demand that the corresponding Hessian
matrix should be non-degenerate:

hij = ∂2L

∂ẋi∂ẋj
, det(hij ) �= 0 . (18)
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The validity of the above condition implies that one can reduce the set of the
Euler–Lagrange equations to the usual form (15).

Obviously, the Hessian matrix plays the role of an integrating multiplier to
the initial system (15). In the general case, after imposing condition (18) the set
of equations for the Lagrange function may be overfull. Therefore, our strategy
will consist in using consequences of Eq. (17) in order to obtain a complete set
of equations for the Hessian matrix, whose validity will solve the initial set of
equations for the Lagrange function.

First of all, it immediately follows from the definition of the matrix hij that
it is symmetric and obeys the identity

∂hij

∂ẋk
= ∂hkj

∂ẋi
. (19)

Then, taking a derivative of (17) w.r.t. ẋk , we obtain

∂2L

∂xi∂ẋk
− ∂3L

∂t∂ẋi∂ẋk
− ∂2L

∂ẋi∂xk
− ∂3L

∂ẋi∂xj ∂ẋk
ẋj − ∂

∂ẋk

(
∂2L

∂ẋi∂ẋj
f j

)
= 0 .

(20)
The symmetric part of the above relation yields the following equation

for hij :

D̂hik + 1

2

(
hij

∂f j

∂ẋk
+ hkj

∂f j

∂ẋi

)
= 0 , (21)

where

D̂ = ∂

∂t
+ ẋj ∂

∂xj
+ f j ∂

∂ẋj
. (22)

Extracting the antisymmetric part, we arrive at the equation

2

(
∂2L

∂xi∂ẋk
− ∂2L

∂ẋi∂xk

)
= hij

∂f j

∂ẋk
− hkj

∂f j

∂ẋi
, (23)

whose differentiation w.r.t. ẋl yields another equation for the Hessian matrix:

∂hkl

∂xi
− ∂hil

∂xk
= 1

2

∂

∂ẋl
Aik ,

Aik = hij

∂f j

∂ẋk
− hkj

∂f j

∂ẋi
.

(24)

Now, differentiating Eq. (17) w.r.t. xk and extracting the antisymmetric part, we
have(

∂

∂t
+ ẋj ∂

∂xj

)(
∂2L

∂ẋk∂xi
− ∂2L

∂ẋi∂xk

)
− ∂

∂xk
(hijf

j ) + ∂

∂xi
(hkjf

j ) = 0 .
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With allowance for Eqs. (21), (23) and (24), the above condition can be rewritten
as

hijB
j

k − hkjB
j

i = 0 , (25)

where

Bi
j = 1

2

∂f i

∂ẋm

∂f m

∂ẋj
− D̂

∂f i

∂ẋj
+ 2

∂f i

∂xj
. (26)

One can verify that Eqs. (19), (21), (24), (25) are the same equations for the inte-
grating multiplier hij that arise from the commutativity condition for variational
derivatives. Furthermore, if there exists (and is known) a Hessian hij , then the
Lagrange function L can be determined from the equation

∂L

∂xi
− ∂2L

∂t∂ẋi
− ∂2L

∂ẋi∂xj
ẋj = hijf

j . (27)

As an example, let us consider the problem of constructing a Lagrange function for
a charged particle in a homogeneous magnetic field with a radiation reaction force
(13). Since the motion along the z-axis is decoupled, it is sufficient to examine the
system of the first two equations:

ẍ = αẋ − βẏ ,

ÿ = βẋ + αẏ ,
(28)

In this case,

Bi
k = 1

2

(
α2 − β2 −2αβ

2αβ α2 − β2

)
,

and condition (25) implies that

Tr(hij ) = h11 + h22 = 0 . (29)

Next, it is easy to see that the general solution of Eqs. (19), (21), (24) is determined
by one arbitrary function φ(z,w) and has the form

hij =
(

F + F̄ i(F − F̄ )

i(F − F̄ ) −(F + F̄ )

)
. (30)

Here, F = φ(ξ̇ e−γ t , ξ̇ − γ ξ )e−γ t , ξ = x + iy, γ = α + iβ, and the bar stands for
complex conjugation.

Setting φ = 1/z, we obtain the simplest time-independent solution:

hij = 2

ẋ2 + ẏ2

(
ẋ ẏ

ẏ −ẋ

)
. (31)
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Substituting this Hessian into Eq. 27), we find the following Lagrangian:

L = 1

2
ẋ ln(ẋ2 + ẏ2) + ẏ arctg

(
ẋ

ẏ

)
+ αx − βy . (32)

The corresponding Euler–Lagrange equations

ẍẋ + ÿẏ

ẋ2 + ẏ2
= α ,

ẍẏ − ÿẋ

ẋ2 + ẏ2
= β , (33)

are obviously equivalent to the initial Eq. (28) with the exception of the point
ẋ = ẏ = 0.

So, formally, the problem of constructing a Lagrangian description for a
self-consistent dynamics of a charged particle in a uniform magnetic field does
admit a solution. Let us remind, however, that, in accordance with the perturba-
tive treatment of the electromagnetic interaction, we require in the limit e → 0
(equivalently α → 0, β → 0) that the Lagrangian L should transform into the
Lagrangian of a free particle,

L0 = 1

2
(ẋ2 + ẏ2) , (34)

modulo a total derivative. Unfortunately, neither the Lagrangian (32) nor any
other Lagrangian constructed from the matrix (30) has a correct free limit. This
is because, according to (29), the trace of the Hessian matrix of any Lagrangian
for the set of Eq. (28) must be equal to zero, and this property holds true after the
limit is taken. On the other hand, the trace of the Hessian matrix of a Lagrangian
L0 is equal to 2. This contradiction proves the statement.

Nevertheless, the absence of a physically satisfactory description of radiation
back-reaction in Lagrangian formalism leaves the hope that such a description is
possible in the framework of Hamiltonian mechanics (the first-order formalism).
Furthermore, an additional argument in favor of the fact that one should be able to
solve the inverse problem of the calculus of variations in the first-order formalism
is that a Lagrangian action for an arbitrary system of second-order differential
equations does not always exist (Douglas, 1941; Dodonov et al., 1978). At the
same time, for an equivalent set of first-order differential equations, a Hamiltonian
action can always be found (see below a proof of this statement).

4. HAMILTONIAN FORMULATION

The existence of a solution of the inverse problem of the calculus of variations
in the first-order formalism (at least, in an everywhere smooth open region of a
phase space) is based on the following simple considerations. Assigning a set of
2n ordinary differential equations

ẋi = vi(x, t) (35)



Hamiltonian Formulation and Action Principle for the Lorentz-Dirac System 1139

is equivalent to selecting a certain vector field v = (vi) in the phase space R2n of
a system. It is known that in a neighborhood of each non-critical point of a vector
field it is possible to introduce such coordinates xi that the vector field has the
form v = ∂/∂x1. Then a Hamiltonian action for the set of Eq. (35) can be selected
as

S[x] =
∫

dt

(
n∑

k=1

xkẋ2n−k+1 − xn

)
.

It is clear that, after returning to the initial coordinates, this action will not take
such a simple form and the corresponding Hamiltonian equations will generally
imply non-canonical Poisson brackets. In view of the smoothness of the change of
coordinates, a small deformation of the initial vector field implies a small defor-
mation of the Hamiltonian and the Poisson brackets. Therefore, in the first-order
formalism it is always possible to ensure a correct limit of vanishing interaction
(deformation). A more detailed discussion of these questions can be found, for
example, in the works (Havas, 1957, 1973; Hojman and Urrutia, 1981; Santilli,
1977).

However, it should be noted that the construction of a change of coordinates
is actually equivalent to the integration of the initial set of equations. Therefore,
an explicit solution of the inverse problem of the calculus of variations can be
found for a very limited number of systems. Below, we will present a solution of
this problem, first of all, for arbitrary system of linear equations, and show that
a quadratic action for such system can always be found; however, in the general
case, both the Hamiltonian and the Poisson bracket will explicitly depend on time,
and thus the theory will be nonstationary. We then consider the case when the
functions vi , that determine the set of Eq. (35), may have an arbitrary dependence
on x but do not depend explicitly on time. In this case, a stationary action can
be found, but the Poisson bracket and Hamiltonian may be essentially nonlinear.
Both these possibilities are illustrated by the examples of a nonrelativistic charged
particle in a uniform magnetic field with a radiation back-reaction force (28).

Consider the most general set of first-order linear differential equations with
non-constant coefficients,

ẋi = Ai
j (t)xj + J i(t) , (36)

defined on a linear phase space with coordinates xi . We will always assume the
phase space of the system (36) to be even-dimensional, i.e., i = 1, . . . , 2n.

Our first observation is that any such system can be derived from the varia-
tion principle for a quadratic action functional if the explicit time-dependence is
admitted in the integrand. Consider the following ansatz:

S[x] = 1

2

∫
dt(xi�ij (t)ẋj − xiBij (t)xj − 2Ci(t)x

i) , (37)
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where

�ij = −�ji , Bij = Bji , det(�ij ) �= 0 . (38)

Structurally, the functional S is similar to the first-order action associated with the
Hamiltonian

H = 1

2
xiBij (t)xj − Ci(t)x

i , (39)

but, unlike the usual Hamiltonian formalism, we allow the symplectic form � to
depend on time.

Taking a variation of this action functional, we arrive at the following equa-
tions 4 :

δS

δxi
= 0 ⇔ ẋ = �−1

(
B − 1

2
�̇

)
x + �−1C . (40)

In order that these equations should be equivalent to the original ones (36), we
must set

A = �−1

(
B − 1

2
�̇

)
, J = �−1C , (41)

or, equivalently,

1

2
�̇ = B − �A, C = �J . (42)

Decomposing the first matrix equation into the symmetric and anti-symmetric
parts, we finally obtain

�̇ = −(�A + At�) , B = 1

2

(
�A − At�

)
, C = �J , (43)

with At being the transposed matrix A. Only the first relation is nontrivial (it is
a linear ODE in �), while the other two relations are merely definitions of the
matrices B and C.

We remind that the square matrix (t) is called the fundamental solution of
(36) in case

̇ = A , (0) = 1 . (44)

The columns of this matrix constitute the basis in the linear space of solutions
to Eq. (36). Given the matrix , the general solution to the first Eq. (43) can be
written as

� = �t�0�, (45)

4 Here we use the matrix notation.
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where � = −1, and �0 = −�t
0 is a constant non-degenerate matrix. The matrix

�0 encodes all the ambiguity in the definition of the quadratic action functional
(37) for the given system of ODEs (36).

Let us now construct a quadratic first-order action for the second-order
Eq. (28). For that we replace them with an equivalent system of first-order ones.
Let us choose the auxiliary variables as

p = ẋ + β

2
y, q = ẏ − β

2
x .

As a result, we arrive at the equations

ẋ = p − β

2
y = v0 ,

ṗ = −β

2
q − β2

4
x + α

(
p − β

2
y

)
= v1 ,

ẏ = q + β

2
x = v2 ,

q̇ = β

2
p − β2

4
y + α

(
q + β

2
x

)
= v3 .

(46)

The quadratic action functional for this system takes the form

S[x] =
∫

dt
e−αt

4(α2 + β2)
[2a(t)(pẋ − xṗ + qẏ − yq̇)

+ 2b(t)(qẋ − xq̇ + yṗ − pẏ) + 2c(t)(pq̇ − qṗ) + 2d(t)(xẏ − yẋ)

+ e(t)(p2 + q2) + f (t)(x2 + y2) + g(t)(px + qy) + j (t)(qx − py)] ,

(47)
where

a(t) = α2cos(βt) + 1

2
β2(e−αt + eαt ), b(t) = α2sin(Bt) − αβeαt + αβcos(βt),

c(t) = e−αtβ + 2αsin(βt) , d(t) = 1

4
β3(e−αt − eαt ) − 1

2
β2αsin(βt)

+α2β(cos(βt) − eαt ) , e(t) = e−αtβ2 + α2cos(βt) + αsin(βt)β,

f (t) = 1

4
β

(
β3e−αt + βα2cos(βt) − αsin(βt)[β2 + 2α2]

)
,

g(t) = −αcos(βt)β2 − α3cos(βt), j (t) = −α3sin(βt) + e−αtβ3 + α2βcos(βt).

In this example, we can observe an interesting fact. Namely, it can be shown that,
the system (46) does not admit a first-order quadratic action involving a stationary
symplectic structure and having the standard free limit.
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In the case when right-hand side of (35) does not depend manifestly on time,
one has to look for an action functional in the form

S =
∫

dt{Aµ(x)ẋµ − H (x)} . (48)

Here, H (x) is the Hamiltonian, and Aµ(x) is a symplectic potential. Taking
a variation of this action, we obtain the following set of equations:

ωµνẋ
ν = ∂H

∂xµ
, (49)

where ωµν = ∂µAν − ∂νAµ is a symplectic 2-form, which is assumed to be non-
degenerate.

If Eq. (49) are equivalent to the initial Eq. (35), then substituting into (49)
the vector field vµ, instead of ẋµ, one obtains the identity

ωµνv
ν = ∂H

∂xµ
. (50)

For a given vµ, this identity produces a number of conditions for the
Hamiltonian H and the symplectic potential Aµ. Contracting the above relation
with vµ, we obtain the equation

vµ ∂H

∂xµ
= 0 , (51)

which implies that the Hamiltonian function H is an integral of motion, and,
therefore, it must be conserved by the vector flow vµ. Besides, by definition, the
2-form ωµν must be closed:

∂λωµν + ∂µωνλ + ∂νωλµ = 0 . (52)

If the symplectic 2-form is known, the symplectic potential can be found
from the integral formula

Aµ(x) =
∫ 1

0
xνωνµ(tx)dt + ∂µϕ(x) ,

where ϕ(x) is an arbitrary function in the phase space.
For a given vector field vµ, Eqs. (50)–(52) can be solved by the method of

characteristics. For instance, in the case of Eq. (46), we obtain

H = 1

2

[
p2+q2 + β(qx − py) + 1

4
β2(x2 + y2)

]
exp

{
−2α

β
arctan

[
p̄ + cq̄

cp̄ − q̄

]}
,

(53)
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ωµν =




0 E1 E2 E3

−E1 0 F3 −F2

−E2 −F3 0 F1

−E3 F2 −F1 0


 , (54)

where5

Ei = 1

v0

(
εijkv

jF k − ∂H

∂xi

)
,

F1 = k − 1

2
, F2 = k + 1

B
, F3 = α

β
,

k = − exp

{
−2α

β
arctan

[
p̄ + cq̄

cp̄ − q̄

]}
,

p̄ = p − β

2
y, q̄ = q + β

2
x ,

and c is an arbitrary integration constant.
In the limit of vanishing friction (α → 0), the bracket (54) and Hamiltonian

(53) tend to the canonical bracket and to the Hamiltonian of a charged particle in
a homogeneous magnetic field, respectively. The same result takes place also in
the nonstationary theory.

Notice that the symplectic structure (54), as well as its nonstationary ana-
logue, does not possess the xy-polarization (i.e. the 2-form � does not vanish
upon a restriction to the 2-plane x = const, y = const) when α �= 0. This makes
impossible an algebraic elimination of p and q from the action, and thus prevents
obtaining a second-order action in terms of x and y. The latter fact is in agree-
ment with the statement of the previous section concerning the non-existence of a
second-order action functional for Eq. (13) that would pass to the standard action
functional for a free particle when e → 0.

Since the inverse problem of the calculus of variations for one and the same
set of equations may admit numerous solutions, the quantization problem for the
system in question does not have a unique solution. Therefore, it is necessary to
impose additional reasonable conditions on the sought-for model, such that the
action functional of this model should possess “good” properties. In the case of
linear systems, the requirement of the squareness of an action functional could
serve as such a condition.

In conclusion, let us note that the presence of a Hamiltonian action provides
the possibility of constructing a quantum-mechanical description of the system
in question. However, the practical implementation of the quantization procedure

5 The auxiliary symbols Ei and Fi are not to be confused with the strength of electromagnetic field.
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encounters the difficulty that the Poisson brackets are non-canonical. Furthermore,
in the phase space of the system the natural polarization (Woodhouse, 1992) is
absent. The combination of all these circumstances prevents a direct application
of the canonical quantization scheme. Nevertheless, the mentioned difficulties can
be overcome by the formalism of deformation quantization (Bayen et al., 1977),
which is applicable to the case of non-canonical Poisson brackets and does not
require the presence of any polarization.
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